PCA-Assisted Fuzzy Clustering Approach for Soft-Failure Detection in Optical Networks
Paper i proceeding, 2024

This paper presents a scalable and interpretable failure detection in transparent optical networks (TONs) exploiting the combination of a Fuzzy C-means clustering approach assisted by a Principal Component Analysis (PCA) based dimensionality reduction technique. As cluster-based approaches allow clear visualization of the data, the use of such techniques can improve the interpretability of the failure detection performance. Meanwhile, the dimensionality reduction technique can handle the typical large-scale telemetry data collected in real-world environments. Evaluations in an optical network testbed show the effectiveness of optical failure detection in terms of classification errors.

TONs

dimensionality reduction

failure management

fuzzy clustering

Författare

A. N. Ribeiro

Universidade Federal do Para

R. F. Sales

Universidade Federal do Para

F. R. Lobato

Universidade Federal do Para

J. C.W.A. Costa

Universidade Federal do Para

M. F. Silva

Los Alamos National Laboratory

Andrea Sgambelluri

Scuola Superiore Sant'Anna (SSSUP)

L. Valcarenghi

Scuola Superiore Sant'Anna (SSSUP)

Lena Wosinska

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Proceedings of the 2024 International Conference on Optical Network Design and Modeling, ONDM 2024


9783903176546 (ISBN)

2024 International Conference on Optical Network Design and Modeling, ONDM 2024
Madrid, Spain,

Ämneskategorier

Telekommunikation

Datavetenskap (datalogi)

DOI

10.23919/ONDM61578.2024.10582591

Mer information

Senast uppdaterat

2024-09-27