Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples
Artikel i vetenskaplig tidskrift, 2024

Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. We propose an active sampling strategy that iterates between estimation and data collection with optimal subsamples, guided by machine learning predictions on yet unseen data. The method is illustrated on virtual simulation-based safety assessment of advanced driver assistance systems. Substantial performance improvements are demonstrated compared to traditional sampling methods.

Adaptiveimportance sampling

Computer simulationexperiments

Traffic safetyassessment

Inverseprobability weighting

Optimal design

Active learning

Författare

Henrik Imberg

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Xiaomi Yang

Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet

Carol Ann Cook Flannagan

Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet

Jonas Bärgman

Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet

Technometrics

0040-1706 (ISSN) 1537-2723 (eISSN)

Supporting the interaction of Humans and Automated vehicles: Preparing for the Environment of Tomorrow (Shape-IT)

Europeiska kommissionen (EU) (EC/H2020/860410), 2019-10-01 -- 2023-09-30.

Improved quantitative driver behavior models and safety assessment methods for ADAS and AD (QUADRIS)

VINNOVA (2020-05156), 2021-04-01 -- 2024-03-31.

Styrkeområden

Transport

Ämneskategorier

Sannolikhetsteori och statistik

DOI

10.1080/00401706.2024.2374554

Mer information

Senast uppdaterat

2024-10-04