Towards Explainable Reinforcement Learning in Optical Networks: The RMSA Use Case
Paper i proceeding, 2024

We propose an approach to extract explanations from a trained reinforcement learning agent. Our analysis over three RMSA environment variations shows how the agent uses the input information, increasing our understanding of its learned policy.

Routing, modulation format, and spectrum assignment

Reinforcement learning

Explainable AI

Författare

Omran Ayoub

University of Applied Sciences and Arts of Southern Switzerland

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Conference on Optical Fiber Communication, Technical Digest Series

W4I.6
9781957171326 (ISBN)

Optical Fiber Communications Conference and Exhibition (OFC)
San Diego, CA, USA,

Fotoniskt-Assisterad Hårdvara för Reservoarberäkning (HJÄRNA)

Vetenskapsrådet (VR) (2022-04798), 2023-01-01 -- 2026-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Telekommunikation

Kommunikationssystem

Datavetenskap (datalogi)

DOI

10.1364/OFC.2024.W4I.6

Mer information

Senast uppdaterat

2024-11-08