Inverse Design of Metamaterials and Photonic Crystals Using Machine Learning
Paper i proceeding, 2024

We present an overview of our work on inverse design of metamaterials and photonic crystals. In the past few years, we have developed neural networks that can provide new designs for nanophotonic structures with predefined optical response. In particular, we have developed a CGAN network that can provide lithographic masks for a meta-atom with desired transmission and reflection properties. We illustrate our machine-learning-based inverse design with examples of metasurfaces with refractive properties, metasurfaces with meta-atoms with interdependent properties, nonlinear photonic-crystal waveguides, and photonic-crystal membranes for optomechanical resonators.

Författare

Viktor Lilja

Chalmers, Fysik, Kondenserad materie- och materialteori

Albin Jonasson Svärdsby

Chalmers, Fysik, Kondenserad materie- och materialteori

Timo Gahlmann

Chalmers, Fysik, Kondenserad materie- och materialteori

Philippe Tassin

Chalmers, Fysik, Kondenserad materie- och materialteori

2024 18th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2024


9798350373493 (ISBN)

18th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2024
Chania, Greece,

Ämneskategorier

Telekommunikation

Annan fysik

Den kondenserade materiens fysik

DOI

10.1109/Metamaterials62190.2024.10703328

Mer information

Senast uppdaterat

2024-11-13