An empirical investigation of challenges of specifying training data and runtime monitors for critical software with machine learning and their relation to architectural decisions
Artikel i vetenskaplig tidskrift, 2024
Författare
Hans-Martin Heyn
Göteborgs universitet
Software Engineering 1
Eric Knauss
Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering
Göteborgs universitet
Iswarya Malleswaran
Student vid Chalmers
Shruthi Dinakaran
Student vid Chalmers
Requirements Engineering
0947-3602 (ISSN) 1432-010X (eISSN)
Vol. 29 1 97-117Very Efficient Deep Learning in IOT (VEDLIoT)
Europeiska kommissionen (EU) (EC/H2020/957197), 2020-11-01 -- 2023-10-31.
Styrkeområden
Informations- och kommunikationsteknik
Ämneskategorier (SSIF 2011)
Data- och informationsvetenskap
DOI
10.1007/s00766-024-00415-4
Relaterade dataset
Replication Data for: An investigation of challenges encountered when specifying training data and runtime monitors for safety critical ML applications [dataset]
DOI: 10.7910/DVN/WJ8TKY URI: https://doi.org/10.7910/DVN/WJ8TKY