Asynchronous Federated Split Learning
Artikel i vetenskaplig tidskrift, 2024

We propose a first Asynchronous Federated Split Learning (AFSL), to add the flexibility of asynchronous computing to the combination of federated and split learning. This amounts to designing a harmonious combination of different paradigms in order to benefit from the advantages of each of them and to reduce the impacts of their shortcomings.This way, AFSL answers to the increasingly rising interest for distributed algorithms with the advent of edge computing in order to support new market segments, such as cloud gaming, immersive eXtended Reality (XR), indoor positioning, and mission critical IoT networks, with stringent requirements on latency and reliability.Computational experiments are conducted on IID and non-IID datasets to investigate the added value of the asynchronous feature. Results indicate that AFSL can accelerate model learning by up to 86% without sacrificing the model's convergence and accuracy. Indeed, not only average training times are reduced, but clients use fewer resources, a critical characteristic for devices with limited computing capabilities, e.g., in edge devices. Performance degradation can be mitigated by a careful selection of the aggregation principle. Other advantages are with AFSL training in dynamic scenarios as it provides robustness with a short recovery time by leveraging asynchronous client training.

Asynchronous

Distributed machine learning

Edge computing

Federated learning

Split learning

Författare

R. A. Albuquerque

Université Concordia

L. P. Dias

Université Concordia

Momo Ziazet

Université Concordia

K. Vandikas

Ericsson AB

S. Ickin

Ericsson AB

B. Jaumard

Ericsson AB

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Lena Wosinska

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Elaine Wong

University of Melbourne

Proceedings of the IEEE International Conference on Fog and Edge Computing, ICFEC

26943263 (ISSN) 26943255 (eISSN)

2024 11-18

Ämneskategorier (SSIF 2011)

Datavetenskap (datalogi)

Datorsystem

DOI

10.1109/ICFEC61590.2024.00010

Mer information

Senast uppdaterat

2024-11-22