Specify What? Enhancing Neural Specification Synthesis by Symbolic Methods
Paper i proceeding, 2025

We investigate how combinations of Large Language Models (LLMs) and symbolic analyses can be used to synthesise specifications of C programs. The LLM prompts are augmented with outputs from two formal methods tools in the Frama-C ecosystem, Pathcrawler and EVA, to produce C program annotations in the specification language ACSL. We demonstrate how the addition of symbolic analysis to the workflow impacts the quality of annotations: information about input/output examples from Pathcrawler produce more context-aware annotations, while the inclusion of EVA reports yields annotations more attuned to runtime errors. In addition, we show that the method infers the programs intent, rather than its behaviour, by generating specifications for buggy programs and observing robustness of the result against bugs.

Författare

George Warren Granberry

Chalmers, Data- och informationsteknik, Formella metoder

Wolfgang Ahrendt

Chalmers, Data- och informationsteknik, Formella metoder

Moa Johansson

Chalmers, Data- och informationsteknik, Data Science och AI

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 15234 LNCS 307-325
9783031765537 (ISBN)

19th International Conference on integrated Formal Methods, iFM 2024
Manchester, United Kingdom,

Ämneskategorier (SSIF 2011)

Programvaruteknik

DOI

10.1007/978-3-031-76554-4_19

Mer information

Senast uppdaterat

2024-12-02