Moa Johansson

Docent vid Data Science och AI

Källa: chalmers.se
Image of Moa Johansson

Visar 36 publikationer

2024

Finding the structure of parliamentary motions in the Swedish Riksdag 1971–2015

Sebastianus Cornelis Jacobus Bruinsma, Moa Johansson
Quality and Quantity. Vol. 58 (4), p. 3275-3301
Artikel i vetenskaplig tidskrift
2024

Lemma Discovery and Strategies for Automated Induction

Sólrún Einarsdóttir, Márton Hajdú, Moa Johansson et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 14739 LNAI, p. 214-232
Paper i proceeding
2024

Reasoning in Transformers – Mitigating Spurious Correlations and Reasoning Shortcuts

Daniel Enström, Viktor Kjellberg, Moa Johansson
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 14980 LNAI, p. 207-221
Paper i proceeding
2024

What Can Large Language Models Do for Theorem Proving and Formal Methods?

Moa Johansson
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 14380 LNCS, p. 391-394
Paper i proceeding
2023

Sudden Semantic Shifts in Swedish NATO Discourse

Brian Bonafilia, Sebastianus Cornelis Jacobus Bruinsma, Denitsa Saynova et al
Association for Computational Linguistics . Annual Meeting Conference Proceedings. Vol. 4, p. 184-193
Paper i proceeding
2023

Exploring Mathematical Conjecturing with Large Language Models

Moa Johansson, Nicholas Smallbone
CEUR Workshop Proceedings. Vol. 3432, p. 62-77
Paper i proceeding
2023

Pacing Patterns of Half-Marathon Runners: An analysis of ten years of results from Gothenburg Half Marathon

Moa Johansson, Johan Atterfors, Johan Lamm
International Journal of Computer Science in Sport. Vol. 22 (1), p. 124-138
Artikel i vetenskaplig tidskrift
2023

The Effect of Scaling, Retrieval Augmentation and Form on the Factual Consistency of Language Models

Lovisa Hagström, Denitsa Saynova, Tobias Norlund et al
EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings, p. 5457-5476
Paper i proceeding
2022

Machine Learning Techniques for Gait Analysis in Skiing

Savya Sachi Gupta, Moa Johansson, Dan Kuylenstierna et al
Proceedings of the 9th International Performance Analysis Workshop and Conference & 5th IACSS Conference, p. 126-129
Paper i proceeding
2022

Machine Learning of Pacing Patterns for Half Marathon

Johan Atterfors, Johan Lamm, Moa Johansson
Preprint
2022

Generating Weekly Training Plans in the Style of a Professional Swimming Coach Using Genetic Algorithms and Random Trees

Rikard Eriksson, Johan Nicander, Moa Johansson et al
Proceedings of the 9th International Performance Analysis Workshop and Conference & 5th IACSS Conference (Advances in Intelligent Systems and Computing 1426). Vol. 1426, p. 61-68
Paper i proceeding
2022

Towards Learning Abstractions via Reinforcement Learning

Erik Jergéus, Leo Karlsson Oinonen, Emil Carlsson et al
CEUR Workshop Proceedings. Vol. 3400, p. 120-126
Paper i proceeding
2022

TriCo—Triple Co-piloting of Implementation, Specification and Tests

Wolfgang Ahrendt, Dilian Gurov, Moa Johansson et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 13701 LNCS, p. 174-187
Paper i proceeding
2021

Automated Conjecturing in QuickSpec

Moa Johansson, Nicholas Smallbone
1 st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.
Paper i proceeding
2021

Conjectures, tests and proofs: An overview of theory exploration

Moa Johansson, Nicholas Smallbone
Electronic Proceedings in Theoretical Computer Science, EPTCS. Vol. 341, p. 1-16
Paper i proceeding
2020

Template-based Theory Exploration: Discovering Properties of Functional Programs by Testing

Sólrún Einarsdóttir, Nicholas Smallbone, Moa Johansson
ACM International Conference Proceeding Series, p. 67-78
Paper i proceeding
2020

Theory exploration: Conjecturing, testing and reasoning about programs

Moa Johansson
Electronic Proceedings in Theoretical Computer Science, EPTCS. Vol. 320
Paper i proceeding
2019

Proving Type Class Laws for Haskell

Andreas Arvidsson, Moa Johansson, Robin Touche
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10447 LNCS, p. 61-74
Paper i proceeding
2019

Preface

José Júlio Alferes, Moa Johansson
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11372 LNCS, p. V-VI
Övrig text i vetenskaplig tidskrift
2019

Lemma Discovery for Induction: A Survey

Moa Johansson
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11617 LNAI, p. 125-139
Paper i proceeding
2019

Identifying cross country skiing techniques using power meters in ski poles.

Moa Johansson, Marie Korneliusson, Nickey Lizbat Lawrence
Communications in Computer and Information Science. Vol. 1056 CCIS, p. 52-57
Paper i proceeding
2018

Towards Machine Learning on Data from Professional Cyclists

Oscar Ivarsson, Agrin Hilmkil, Moa Johansson et al
Proceedings of the XII World Congress of Performance Analysis of Sport. Vol. 2018
Paper i proceeding
2018

Into the infinite - theory exploration for coinduction

Sólrún Einarsdóttir, Moa Johansson, Johannes Åman Pohjala
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11110 LNAI, p. 70-86
Paper i proceeding
2017

QuickSpec: a lightweight theory exploration tool for programmers (system demonstration)

Maximilian Algehed, Koen Lindström Claessen, Moa Johansson et al
SIGPLAN Notices (ACM Special Interest Group on Programming Languages). Vol. 52 (10), p. 38-39
Artikel i vetenskaplig tidskrift
2017

Automated theory exploration for interactive theorem proving: An introduction to the hipster system

Moa Johansson
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10499 LNCS, p. 1-11
Paper i proceeding
2017

Quick Specifications for the Busy Programmer

Nicholas Smallbone, Moa Johansson, Koen Lindström Claessen et al
Journal of Functional Programming. Vol. 27
Artikel i vetenskaplig tidskrift
2017

QuickSpec: A lightweight theory exploration tool for programmers (system demonstration)

Maximilian Algehed, Koen Claessen, Moa Johansson et al
Haskell 2017 - Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell, co-located with ICFP 2017, p. 38-39
Paper i proceeding
2016

Preface

Michael Kohlhase, Moa Johansson, B. Miller et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9791, p. V-VII
Övrig text i vetenskaplig tidskrift
2015

TIP: Tons of Inductive Problems

Koen Lindström Claessen, Moa Johansson, Dan Rosén et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9150, p. 332-336
Paper i proceeding
2015

On Interpolation in Automated Theorem Proving

M.P. Bonacina, Moa Johansson
Journal of Automated Reasoning. Vol. 54 (1), p. 69-97
Artikel i vetenskaplig tidskrift
2015

The Theory behind TheoryMine

A. Bundy, F. Cavallo, L. Dixon et al
IEEE Intelligent Systems. Vol. 30 (4), p. 64-69
Artikel i vetenskaplig tidskrift
2015

Conditional Lemma Discovery and Recursion Induction in Hipster.

Moa Johansson, Irene Lobo Valbuena
Electronic Communications of the EASST. Vol. 72
Artikel i vetenskaplig tidskrift
2015

Interpolation Systems for Ground Proofs in Automated Deduction: a Survey

M.P. Bonacina, Moa Johansson
Journal of Automated Reasoning. Vol. 54 (4), p. 353-390
Artikel i vetenskaplig tidskrift
2014

Hipster: Integrating theory exploration in a proof assistant

Moa Johansson, Dan Rosén, Nicholas Smallbone et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8543 LNAI, p. 108-122
Paper i proceeding
2013

Proof-pattern recognition and lemma discovery in ACL2

J. Heras, E. Komendantskaya, Moa Johansson et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8312 LNCS, p. 389-406
Paper i proceeding
2013

Automating Inductive Proofs using Theory Exploration

Koen Lindström Claessen, Dan Rosén, Moa Johansson et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7898 LNAI, p. 392-406
Paper i proceeding

Ladda ner publikationslistor

Du kan ladda ner denna lista till din dator.

Filtrera och ladda ner publikationslista

Som inloggad användare hittar du ytterligare funktioner i MyResearch.

Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:

Zotero Connector
Mendeley Web Importer

Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.

Visar 3 forskningsprojekt

2023–2026

NeSSy: Neuro-symbolisk syntes via förstärkningsinlärning

Moa Johansson Formella metoder
Vetenskapsrådet (VR)

2020–2023

Bias and methods of AI technology studying political behaviour

Moa Johansson Formella metoder
Marianne och Marcus Wallenberg Stiftelse

1 publikation finns
2015–2018

Lärande och teoribildning inom automatisk teorembevisning

Moa Johansson Programvaruteknik
Vetenskapsrådet (VR)

Det kan finnas fler projekt där Moa Johansson medverkar, men du måste vara inloggad som anställd på Chalmers för att kunna se dem.