Class Explanations: the Role of Domain-Specific Content and Stop Words
Paper i proceeding, 2023

We address two understudied areas related to explainability for neural text models. First, class explanations. What features are descriptive across a class, rather than explaining single input instances? Second, the type of features that are used for providing explanations. Does the explanation involve the statistical pattern of word usage or the presence of domain-specific content words? Here, we present a method to extract both class explanations and strategies to differentiate between two types of explanations – domain-specific signals or statistical variations in frequencies of common words. We demonstrate our method using a case study in which we analyse transcripts of political debates in the Swedish Riksdag.

Författare

Denitsa Saynova

Chalmers, Data- och informationsteknik, Data Science och AI

Sebastianus Cornelis Jacobus Bruinsma

Chalmers, Data- och informationsteknik, Data Science och AI

Moa Johansson

Informations- och kommunikationsteknik

Richard Johansson

Göteborgs universitet

Chalmers, Data- och informationsteknik, Data Science

Proceedings of the 24th Nordic Conference on Computational Linguistics, NoDaLiDa 2023

103-112
9789916219997 (ISBN)

24th Nordic Conference on Computational Linguistics, NoDaLiDa 2023
Torshavn, Faroe Islands,

Ämneskategorier (SSIF 2025)

Språkbehandling och datorlingvistik

Mer information

Senast uppdaterat

2025-02-14