Lemma Discovery and Strategies for Automated Induction
Paper i proceeding, 2024

We investigate how the automated inductive proof capabilities of the first-order prover Vampire can be improved by adding lemmas conjectured by the QuickSpec theory exploration system and by training strategy schedules specialized for inductive proofs. We find that adding lemmas improves performance (measured in number of proofs found for benchmark problems) by 40% compared to Vampire’s plain structural induction as baseline. Strategy training alone increases the number of proofs found by 130%, and the two methods in combination provide an increase of 183%. By combining strategy training and lemma discovery we can prove more inductive benchmarks than previous state-of-the-art inductive proof systems (HipSpec and CVC4).

Theory Exploration

Strategies

Lemma Discovery

Induction

Vampire

Författare

Sólrún Einarsdóttir

Chalmers, Data- och informationsteknik, Data Science och AI

Márton Hajdú

Technische Universität Wien

Moa Johansson

Chalmers, Data- och informationsteknik, Data Science och AI

Nicholas Smallbone

Chalmers, Data- och informationsteknik, Funktionell programmering

Martin Suda

Ceske Vysoke Uceni Technicke v Praze

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 14739 LNAI 214-232
9783031634970 (ISBN)

12th International Joint Conference on Automated Reasoning, IJCAR 2024
Nancy, France,

Ämneskategorier

Algebra och logik

Datavetenskap (datalogi)

Matematisk analys

DOI

10.1007/978-3-031-63498-7_13

Mer information

Senast uppdaterat

2024-08-09