Poincare-Lelong Type Formulas and Segre Numbers
Artikel i vetenskaplig tidskrift, 2025

Let E and F be Hermitian vector bundles over a complex manifold X and let g : E -> F be a holomorphic morphism. We prove a Poincar & eacute;-Lelong type formula with a residue term M-g. The currents Mg so obtained have an expected functorial property. We discuss various applications: If F has a trivial holomorphic subbundle of rank r outside the analytic set Z, then we get currents with support on Z that represent the Bott-Chern classes c(k)(<^>)(E) for k>rank E-r. We also consider Segre and Chern forms associated with certain singular metrics on E. The multiplicities (Lelong numbers) of the various components of Mg only depend on the cokernel of the adjoint sheaf morphism g(& lowast;). This leads to a notion of distinguished varieties and Segre numbers of an arbitrary coherent sheaf, generalizing these notions, in particular the Hilbert-Samuel multiplicity, in case of an ideal sheaf.

Poincare-Lelong formula

Segre form

Chern form

Segre numbers

Författare

Mats Andersson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Journal of Geometric Analysis

1050-6926 (ISSN)

Vol. 35 1 25

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/s12220-024-01847-8

Mer information

Senast uppdaterat

2024-12-05