Affine Steerers for Structured Keypoint Description
Paper i proceeding, 2025

We propose a way to train deep learning based keypoint descriptors that makes them approximately equivariant for locally affine transformations of the image plane. The main idea is to use the representation theory of GL(2) to generalize the recently introduced concept of steerers from rotations to affine transformations. Affine steerers give high control over how keypoint descriptions transform under image transformations. We demonstrate the potential of using this control for image matching. Finally, we propose a way to finetune keypoint descriptors with a set of steerers on upright images and obtain state-of-the-art results on several standard benchmarks. Code will be published at github.com/georg-bn/affine-steerers.

Equivariance

Image matching

Keypoint description

Författare

Georg Bökman

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Johan Edstedt

Linköpings universitet

Michael Felsberg

Linköpings universitet

Fredrik Kahl

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lecture Notes in Computer Science

0302-9743 (ISSN) 16113349 (eISSN)

Vol. 15144 449-468
978-3-031-73015-3 (ISBN)

18th European Conference on Computer Vision (ECCV)
Milan, Italy,

Ämneskategorier

Datorseende och robotik (autonoma system)

DOI

10.1007/978-3-031-73016-0_26

Mer information

Senast uppdaterat

2024-12-19