General-purpose machine-learned potential for 16 elemental metals and their alloys
Artikel i vetenskaplig tidskrift, 2024
Författare
Keke Song
University of Science and Technology Beijing
Rui Zhao
Hunan University
Jiahui Liu
University of Science and Technology Beijing
Yanzhou Wang
University of Science and Technology Beijing
Aalto-Yliopisto
Eric Lindgren
Chalmers, Fysik, Kondenserad materie- och materialteori
Yong Wang
Nanjing University
Shunda Chen
The George Washington University School of Engineering and Applied Science
Ke Xu
Chinese University of Hong Kong
Ting Liang
Chinese University of Hong Kong
Penghua Ying
Tel Aviv University
Nan Xu
College of Chemical and Biological Engineering, Zhejiang University
Institute of Zhejiang University-Quzhou
Zhiqiang Zhao
Nanjing University of Aeronautics and Astronautics
Jiuyang Shi
Nanjing University
Junjie Wang
Nanjing University
Shuang Lyu
The University of Hong Kong
Zezhu Zeng
The University of Hong Kong
Shirong Liang
Harbin Institute of Technology
Haikuan Dong
Bohai University
Ligang Sun
Harbin Institute of Technology
Yue Chen
The University of Hong Kong
Zhuhua Zhang
Nanjing University of Aeronautics and Astronautics
Wanlin Guo
Nanjing University of Aeronautics and Astronautics
Ping Qian
University of Science and Technology Beijing
Jian Sun
Nanjing University
Paul Erhart
Chalmers, Fysik
Tapio Ala-Nissila
Loughborough University
Aalto-Yliopisto
Yanjing Su
University of Science and Technology Beijing
Zheyong Fan
Bohai University
Nature Communications
2041-1723 (ISSN) 20411723 (eISSN)
Vol. 15 1 10208Karbider som vätefällor i stål
Vetenskapsrådet (VR) (2021-05072), 2021-12-01 -- 2025-11-30.
Sveriges Neutronforskarskola - SwedNESS
Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2017-01-01 -- 2020-12-31.
Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2016-07-01 -- 2021-06-30.
Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala
Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.
Ämneskategorier (SSIF 2011)
Den kondenserade materiens fysik
DOI
10.1038/s41467-024-54554-x
Relaterade dataset
Source Data for the manuscript: General-purpose machine-learned potential for 16 elemental metals and their alloys [dataset]
DOI: https://doi.org/10.5281/zenodo.13956357