Thickness dependence of the mechanical properties of piezoelectric high-Qm nanomechanical resonators made from aluminium nitride
Artikel i vetenskaplig tidskrift, 2024

Nanomechanical resonators with high quality factors (Qm) enable mechanics-based quantum technologies, in particular quantum sensing and quantum transduction. High-Qm nanomechanical resonators in the kHz to MHz frequency range can be realized in tensile-strained thin films that allow the use of dissipation dilution techniques to drastically increase Qm. In our work, we study the material properties of tensile-strained piezoelectric films made from aluminium nitride (AlN). We characterize crystalline AlN films with a thickness ranging from 45 nm to 295 nm, which are directly grown on Si(111) by metal-organic vapour-phase epitaxy. We report on the crystal quality and surface roughness, the piezoelectric response, and the residual and released stress of the AlN thin films. Importantly, we determine the intrinsic quality factor of the films at room temperature in high vacuum. We fabricate and characterize AlN nanomechanical resonators that exploit dissipation dilution to enhance the intrinsic quality factor by utilizing the tensile strain in the film. We find that AlN nanomechanical resonators below 200 nm thickness exhibit the highest Q m × f m -product, on the order of 1012 Hz. We discuss possible strategies to optimize the material growth that should lead to devices that reach even higher Q m × f m -products. This will pave the way for future advancements of optoelectromechanical quantum devices made from tensile-strained piezoelectric AlN.

nanotechnology

appled physics

quantum technology

nanomechanics

sensing

Författare

Anastasiia Ciers

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Alexander Wolfgang Martin Jung

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Joachim Ciers

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Laurentius Radit Nindito

Student vid Chalmers

Hannes Pfeifer

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Armin Dadgar

Otto von Guericke Universitaet Magdeburg

Jürgen Bläsing

Otto von Guericke Universitaet Magdeburg

André Strittmatter

Otto von Guericke Universitaet Magdeburg

Witlef Wieczorek

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Materials for Quantum Technology

26334356 (eISSN)

Vol. 4 4 046301

Wallenberg Centre for Quantum Technology (WACQT)

Knut och Alice Wallenbergs Stiftelse (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

ERGODIC: Kombinerade person- och godstransporter i förortstrafik

Europeiska kommissionen (EU) (F-ENUAC-2022-0003), 2023-10-01 -- 2026-09-30.

VINNOVA (ERGODIC), 2023-10-01 -- 2026-09-30.

Europeiska kommissionen (EU) (F-DUT-2022-0078), 2023-10-01 -- 2026-09-30.

Ickelinjär koppling mellan ljus och mekaniska vibrationer för experiment inom kvantoptik och kvantsensorer

Vetenskapsrådet (VR) (2019-04946), 2020-01-01 -- 2023-12-31.

Ämneskategorier (SSIF 2011)

Annan materialteknik

Den kondenserade materiens fysik

Infrastruktur

Nanotekniklaboratoriet

DOI

10.1088/2633-4356/ad9b64

Relaterade dataset

Thickness dependence of the mechanical properties of piezoelectric high-Q_m nanomechanical resonators made from aluminium nitride [dataset]

DOI: 10.5281/zenodo.13890719

Mer information

Senast uppdaterat

2025-01-14