On proper intersections on a singular analytic space
Artikel i vetenskaplig tidskrift, 2025

Given a reduced analytic space Y we introduce a class of nice cycles, including all effective Q-Cartier divisors. Equidimensional nice cycles that intersect properly allow for a natural intersection product. Using ∂¯-potentials and residue calculus we provide an intrinsic way of defining this product. The intrinsic definition makes it possible to prove global formulas. In case Y is smooth all cycles are differences of nice cycles, and so we get a new way to define classical proper intersections.

Författare

Mats Andersson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Håkan Samuelsson Kalm

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Mathematische Zeitschrift

0025-5874 (ISSN) 14321823 (eISSN)

Vol. 309 2 23

Ämneskategorier (SSIF 2011)

Geometri

DOI

10.1007/s00209-024-03642-1

Mer information

Senast uppdaterat

2025-01-10