ALMA Lensing Cluster Survey: Dust mass measurements as a function of redshift, stellar mass, and star formation rate from z = 1 to z = 5
Artikel i vetenskaplig tidskrift, 2025

Context. Understanding the dust content of galaxies, its evolution with redshift and its relation to stars and star formation is fundamental for our understanding of galaxy evolution. Dust acts as a catalyst of star formation and as a shield for star light. Advanced millimeter facilities like ALMA have made dust observation ever more accessible, even at high redshift. However, dust emission is typically very faint, making the use of stacking techniques is instrumental in the study of dust in statistically sound samples. Aims. Using the ALMA Lensing Cluster Survey (ALCS) wide-area band-6 continuum dataset (∼ 110 arcmin2 across 33 lensing clusters), we constrain the dust-mass evolution with redshift, stellar mass, and star formation rate (SFR). Methods. After binning sources according to redshift, SFR, and stellar mass as extracted from an HST-IRAC catalog, we performed a set of continuum-stacking analyses in the image domain using LINESTACKER on sources between z = 1 and z = 5, which further improved the depth of our data. The large field of view provided by the ALCS allowed us to reach a final sample of ∼4000 galaxies with known coordinates and SED-derived physical parameters. We stacked sources with an SFR between 10-3 and 103 M⊙ per year and a stellar mass between 108 and 1012 M⊙, and we split them into different stellar mass and SFR bins. Through stacking, we retrieved the continuum 1.2 mm flux, which is a known dust-mass tracer. This allowed us to derive the dust-mass evolution with redshift and its relation to the SFR and stellar mass. Results. We clearly detect the continuum in most of the subsamples. From the nondetections, we derive 3σ upper limits. We observe a steady decline in the average dust mass with redshift. Moreover, sources with a higher stellar mass or SFR have a higher dust mass on average. This allows us to derive scaling relations. Our results mostly agree well with models at z ∼ 1-3, but they indicate a typically lower dust mass than predicted at higher redshift.

Extinction

Dust

Galaxies: evolution

Galaxies: statistics

Galaxies: ISM

Författare

Jean Baptiste Jolly

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

Max-Planck-Gesellschaft

Kirsten Knudsen

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

N. Laporte

Laboratoire d'Astrophysique de Marseille

Andrea Guerrero

Universidad de Concepción

S. Fujimoto

Niels Bohr Institute

Cosmic Dawn Center (DAWN)

Kotaro Kohno

Research Center for the Early Universe

University of Tokyo

V. Kokorev

Rijksuniversiteit Groningen

C. D. P. Lagos

University of Western Australia

Thiébaut-Antoine Schirmer

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

F. E. Bauer

Pontificia Universidad Catolica de Chile

Instituto Milenio de Astrofísica

Miroslava Dessauge-Zavadsky

Université de Genève

D. Espada

Universidad de Granada

B. Hatsukade

University of Tokyo

Anton M. Koekemoer

Space Telescope Science Institute (STScI)

J. Richard

Université de Lyon

Fengwu Sun

University of Arizona

John F. Wu

Space Telescope Science Institute (STScI)

Johns Hopkins University

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 693 A190

The Origin and Fate of Dust in Our Universe

Knut och Alice Wallenbergs Stiftelse (KAW 2020.0081), 2021-07-01 -- 2026-06-30.

Knut och Alice Wallenbergs Stiftelse (KAW 2019.0443), 2020-06-01 -- 2023-05-31.

Galaxers utveckling: Spår av gas i stjärnbildande galaxer

Vetenskapsrådet (VR) (2015-05580), 2016-01-01 -- 2019-12-31.

Ämneskategorier (SSIF 2025)

Astronomi, astrofysik och kosmologi

DOI

10.1051/0004-6361/202346239

Mer information

Senast uppdaterat

2025-01-28