Microstructure tailoring for crack mitigation in CM247LC manufactured by powder bed fusion – Laser beam
Artikel i vetenskaplig tidskrift, 2025

Tailored microstructures in powder bed fusion – laser beam (PBF-LB) can aid in crack mitigation of non-weldable Ni-base superalloys such as CM247LC. This study explores the effect of a range of stripe widths from 5 mm down to 0.2 mm to control solidification cracking, microstructure, and residual stress in CM247LC manufactured by PBF-LB. The decrease in melt pool depth with the reduction in stripe width from 5 to 0.2 mm promoted the < 100 > crystallographic texture along the build direction. The crack density measurements indicated that there is an increase from 0.62 mm/mm2 (5 mm) to 1.71 mm/mm2 (1 mm) followed by a decrease to 0.33 mm/mm2 (0.2 mm). Atom probe tomography investigations at high-angle grain boundaries revealed that there is higher Hf segregation in 0.2 mm stripe width when compared to 5 mm. This indicates that the cracking behavior is likely influenced by the grain boundary segregation which in turn is dependent on melt pool shape/size and mushy zone length indicated by accompanying simulations. Residual stress, measured by X-ray diffraction, decreased from 842 MPa (5 mm) to 690 MPa (1 mm), followed by an abnormal rise to 842 MPa (0.7 mm) and 875 MPa (0.5 mm). This residual stress behavior is likely associated with the cracks acting as a stress relief mechanism. However, the 0.2 mm stripe width exhibited the lowest stress of 647 MPa, suggesting a different mechanism for stress relief, possibly due to re-melting. These findings highlight the critical role of stripe width as a scan strategy in PBF-LB processing of crack-susceptible alloys.

Non-weldable superalloy

Scanning strategy

CM247LC

Stripe width

Solidification cracking

Residual stresses

Författare

Ahmed Fardan Jabir Hussain

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Andrea Fazi

Chalmers, Fysik, Mikrostrukturfysik

Jakob Schröder

Bundesanstalt für Materialforschung und -prüfung (BAM)

T. Mishurova

Bundesanstalt für Materialforschung und -prüfung (BAM)

Tobias Deckers

Universität Duisburg-Essen

Linde GmbH

Giovanni Bruno

Universität Potsdam

Bundesanstalt für Materialforschung und -prüfung (BAM)

Mattias Thuvander

Chalmers, Fysik, Mikrostrukturfysik

Andreas MarkstrÖm

Thermo-Calc Software AB

Håkan Brodin

Siemens Energy

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Eduard Hryha

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Additive Manufacturing

2214-8604 (eISSN)

Vol. 99 104672

Material för gröna vätgasdrivna gasturbiner genom additivtillverkning

VINNOVA (2021-01005), 2021-05-03 -- 2024-04-30.

Ämneskategorier (SSIF 2025)

Metallurgi och metalliska material

Bearbetnings-, yt- och fogningsteknik

Annan materialteknik

Drivkrafter

Hållbar utveckling

Infrastruktur

Chalmers materialanalyslaboratorium

Additiv tillverkning vid Chalmers

Styrkeområden

Materialvetenskap

DOI

10.1016/j.addma.2025.104672

Mer information

Senast uppdaterat

2025-02-13