Technologies for Interoperable Internet of Medical Things Platforms to Manage Medical Emergencies in Home and Prehospital Care: Scoping Review
Reviewartikel, 2025
Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety. Gaining more knowledge about addressing higher levels of interoperability issues is essential to unlock the full potential of IoMT platforms. Objective: This scoping review aims to summarize best practices and technologies to overcome interoperability issues in IoMT platform development for prehospital care and HBC. Methods: This review adheres to a protocol published in 2022. Our literature search followed a dual search strategy and was conducted up to August 2023 across 6 electronic databases: IEEE Xplore, PubMed, Scopus, ACM Digital Library, Sage Journals, and ScienceDirect. After the title, abstract, and full-text screening performed by 2 reviewers, 158 articles were selected for inclusion. To answer our 2 research questions, we used 2 models defined in the protocol: a 6-level interoperability model and a 5-level IoMT reference model. Data extraction and synthesis were conducted through thematic analysis using Dedoose. The findings, including commonly used technologies and standards, are presented through narrative descriptions and graphical representations. Results: The primary technologies and standards reported for interoperable IoMT platforms in prehospital care and HBC included cloud computing (19/30, 63%), representational state transfer application programming interfaces (REST APIs; 17/30, 57%), Wi-Fi (17/30, 57%), gateways (15/30, 50%), and JSON (14/30, 47%). Message queuing telemetry transport (MQTT; 7/30, 23%) and WebSocket (7/30, 23%) were commonly used for real-time emergency alerts, while fog and edge computing were often combined with cloud computing for enhanced processing power and reduced latencies. By contrast, technologies associated with higher interoperability levels, such as blockchain (2/30, 7%), Kubernetes (3/30, 10%), and openEHR (2/30, 7%), were less frequently reported, indicating a focus on lower level of interoperability in most of the included studies (17/30, 57%). Conclusions: IoMT platforms that support higher levels of interoperability have the potential to deliver personalized patient care, enhance overall patient experience, enable early disease detection, and minimize time delays. However, our findings highlight a prevailing emphasis on lower levels of interoperability within the IoMT research community. While blockchain, microservices, Docker, and openEHR are described as suitable solutions in the literature, these technologies seem to be seldom used in IoMT platforms for prehospital care and HBC. Recognizing the evident benefit of cross-domain interoperability, we advocate a stronger focus on collaborative initiatives and technologies to achieve higher levels of interoperability.
internet
Internet of Medical Things
technology
medical emergency
scoping review
home-based care
telehealth
cross-domain interoperability
multimorbidity
innovation
prehospital care
global population
artificial intelligence
chronic disease
health care system
digital health
gerontology
enabling technologies
health informatics
standards