Autonomous demon exploiting heat and information at the trajectory level
Artikel i vetenskaplig tidskrift, 2025

We propose an electronic bipartite system consisting of a working substance, in which a refrigeration process is implemented, and of a nonthermal resource region, containing a combination of different thermal baths. In the working substance, heat is extracted from the coldest of two electronic reservoirs (refrigeration) via heat transport and particle transport through a quantum dot. This quantum dot of the working substance is capacitively coupled to the resource region. In such a setup, a finite cooling power can be obtained in the working substance, while the energy exchange with the resource region exactly cancels out, on average. At the same time, information is always exchanged, even on average, due to the capacitive coupling between the two parts of the bipartite system. The proposed system therefore implements an autonomous demon with fully vanishing heat extraction from the resource. Unlike macroscopic machines, nanoscale machines exhibit large fluctuations in performance, so precision becomes an important performance quantifier. We give a comprehensive description of the thermodynamic performance of the proposed autonomous demon in terms of stochastic trajectories and of full counting statistics and demonstrate that the precision of the cooling power strongly depends on the operation principle of the device. More specifically, the interplay of information flow and counterbalancing heat flows dramatically impacts the trade-off between cooling power, efficiency, and precision. We expect this insight to be of relevance for guiding the design of energy-conversion processes exploiting nonthermal resources.

Performance

Cooling power

Nonthermal

Energy exchanges

Bipartite systems

Capacitively coupled

Time information

Thermal bath

Heat transport

Particle transport

Författare

Juliette Monsel

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Matteo Acciai

Scuola Internazionale Superiore di Studi Avanzati

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Rafael Sánchez

Universidad Autonoma de Madrid (UAM)

Janine Splettstösser

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Physical Review B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 111 4 045419

On-chip waste recovery in quantum and nanoscale devices guided by novel performance quantifiers (NanoRecycle)

Europeiska kommissionen (EU) (EC/HE/101088169), 2024-01-01 -- 2028-12-31.

Ämneskategorier (SSIF 2025)

Den kondenserade materiens fysik

Energiteknik

DOI

10.1103/PhysRevB.111.045419

Relaterade dataset

DOI: 10.5281/zenodo.13740976

Mer information

Senast uppdaterat

2025-03-04