Genetic adaptation to amoxicillin in Escherichia coli: The limited role of dinB and katE
Artikel i vetenskaplig tidskrift, 2025

Bacteria can quickly adapt to sub-lethal concentrations of antibiotics. Several stress and DNA repair genes contribute to this adaptation process. However, the pathways leading to adaptation by acquisition of de novo mutations remain poorly understood. This study explored the roles of DNA polymerase IV (dinB) and catalase HP2 (katE) in E. coli's adaptation to amoxicillin. These genes are thought to play essential roles in beta-lactam resistance-dinB in increasing mutation rates and katE in managing oxidative stress. By comparing the adaptation rates, transcriptomic profiles, and genetic changes of wild-type and knockout strains, we aimed to clarify the contributions of these genes to beta-lactam resistance. While all strains exhibited similar adaptation rates and mutations in the frdD gene and ampC operon, several unique mutations were acquired in the Delta katE and Delta dinB strains. Overall, this study distinguishes the contributions of general stress-related genes on the one hand, and dinB, and katE on the other hand, in development of beta-lactam resistance.

Författare

Lisa Teichmann

Universiteit Van Amsterdam

Marcus Wenne

Chalmers, Life sciences, Systembiologi

Sam Luitwieler

Universiteit Van Amsterdam

Gaurav Dugar

Universiteit Van Amsterdam

Johan Bengtsson-Palme

Göteborgs universitet

Benno ter Kuile

Universiteit Van Amsterdam

PLoS ONE

1932-6203 (ISSN) 19326203 (eISSN)

Vol. 20 2 e0312223

Ämneskategorier (SSIF 2025)

Mikrobiologi

Genetik och genomik

DOI

10.1371/journal.pone.0312223

PubMed

39970152

Mer information

Senast uppdaterat

2025-03-21