The ideal separation property for reduced group C-algebras
Artikel i vetenskaplig tidskrift, 2025

We say that an inclusion of an algebra A into a C⁎-algebra B has the ideal separation property if closed ideals in B can be recovered by their intersection with A. Such inclusions have attractive properties from the point of view of harmonic analysis and noncommutative geometry. We establish several permanence properties of locally compact groups for which L1(G)⊆Cred⁎(G) has the ideal separation property.

Ideal separation property

⁎-regularity

Group C -algebra ⁎

Ideal intersection property

Locally compact groups

C -uniqueness ⁎

Författare

Are Austad

Universitetet i Oslo

Hannes Thiel

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 289 1 110904

Ämneskategorier (SSIF 2025)

Geometri

Algebra och logik

DOI

10.1016/j.jfa.2025.110904

Mer information

Senast uppdaterat

2025-03-14