Ultraviolet-C Vertical-Cavity Surface-Emitting Lasers with Precise Cavity Length Control
Artikel i vetenskaplig tidskrift, 2025

In vertical-cavity surface-emitting lasers (VCSELs), the cavity length defines the resonance wavelength, which is directly related to the laser detuning, that is, the difference between resonance wavelength and gain peak. A low detuning maximizes the modal gain leading to a reduction of the threshold. Therefore, controlling the cavity length of VCSELs is of great importance. Here optically pumped ultraviolet-C (wavelength (Formula presented.) 280 nm) VCSELs with precise cavity length control are demonstrated. The VCSEL structure is formed by an AlN cavity with 5 (Formula presented.) Al0.40Ga0.60/Al0.70Ga0.30N quantum wells and a top HfO2 spacer layer with dielectric SiO2/HfO2 distributed Bragg reflectors on both sides of the cavity. To access the N-face side of the cavity, a new methodology referred to as photo-assisted electrochemical etching is employed for substrate removal. Across a 0.9 mm (Formula presented.) 1.2 mm area, the lasing wavelength varies a maximum of 1.17 nm between different UVC VCSELs, exhibiting threshold pump power densities from 0.7 MW/cm2 to 3.7 MW/cm2 and detuning values between 0 to 2 nm. The results show that VCSELs with a cavity length variation lower than 1 (Formula presented.) can be obtained with this technology.

UVC

VCSEL

photo-assisted electrochemical etching

AlGaN

electrochemical etching

Författare

Estrella Torres

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Joachim Ciers

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Nelson Rebelo

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Filip Hjort

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Michael Alexander Bergmann

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Sarina Graupeter

Technische Universität Berlin

Johannes Enslin

Ferdinand-Braun-Institut fur Hochstfrequenztechnik

Technische Universität Berlin

Giulia Cardinalli

Technische Universität Berlin

Tim Wernicke

Technische Universität Berlin

Michael Kneissl

Technische Universität Berlin

Ferdinand-Braun-Institut fur Hochstfrequenztechnik

Åsa Haglund

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Laser and Photonics Reviews

1863-8880 (ISSN) 1863-8899 (eISSN)

Vol. In Press

Microcavity laser breakthrough for ultraviolet light (UV-LASE)

Europeiska kommissionen (EU) (EC/H2020/865622), 2020-08-01 -- 2025-07-31.

Ultravioletta och blå mikrokavitetslasrar

Vetenskapsrådet (VR) (2018-00295), 2019-01-01 -- 2024-12-31.

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

Telekommunikation

Subatomär fysik

Infrastruktur

Myfab (inkl. Nanotekniklaboratoriet)

DOI

10.1002/lpor.202402203

Mer information

Senast uppdaterat

2025-04-14