SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving
Paper i proceeding, 2025

Ensuring the safety of autonomous robots, such as self-driving vehicles, requires extensive testing across diverse driving scenarios. Simulation is a key ingredient for conducting such testing in a cost-effective and scalable way. Neural rendering methods have gained popularity, as they can build simulation environments from collected logs in a data-driven manner. However, existing neural radiance field (NeRF) methods for sensor-realistic rendering of camera and lidar data suffer from low rendering speeds, limiting their applicability for large-scale testing. While 3D Gaussian Splatting (3DGS) enables real-time rendering, current methods are limited to camera data and are unable to render lidar data essential for autonomous driving. To address these limitations, we propose SplatAD, the first 3DGS-based method for realistic, real-time rendering of dynamic scenes for both camera and lidar data. SplatAD accurately models key sensor-specific phenomena such as rolling shutter effects, lidar intensity, and lidar ray dropouts, using purpose-built algorithms to optimize rendering efficiency. Evaluation across three autonomous driving datasets demonstrates that SplatAD achieves state-of-the-art rendering quality with up to +2 PSNR for NVS and +3 PSNR for reconstruction while increasing rendering speed over NeRF-based methods by an order of magnitude. See https://research.zenseact.com/publications/splatad/ for our project page.

autonoma fordon

Gaussian Splatting

Novel view synthesis

Författare

Georg Hess

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Carl Lindström

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Maryam Fatemi

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Christoffer Petersson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Lennart Svensson

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

2025 Conference on Computer Vision and Pattern Recognition (CVPR)
Nashville, TN, USA,

Följning av objekt för självkörande fordon med hjälp av djup maskininlärning

Wallenberg AI, Autonomous Systems and Software Program, 2021-08-01 -- 2025-08-01.

Styrkeområden

Transport

Ämneskategorier (SSIF 2025)

Datorgrafik och datorseende

Artificiell intelligens

Mer information

Skapat

2025-04-22