Inferring Contributions in Privacy-Preserving Federated Learning
Övrig text i vetenskaplig tidskrift, 2025

To what extent do individual contributions enhance the overall outcome of collaborative work? This question naturally arises across scientific fields and is particularly challenging in Federated Learning. It remains largely unexplored in privacy-preserving settings where individual actions are concealed with techniques like Secure Aggregation.

Författare

Balazs Pejo

Budapesti Muszaki es Gazdasagtudomanyi Egyetem

Delio Jaramillo Velez

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

ERCIM NEWS

0926-4981 (ISSN) 1564-0094 (eISSN)

Vol. In Press 140

Ämneskategorier (SSIF 2025)

Datavetenskap (datalogi)

Mer information

Senast uppdaterat

2025-05-02