Finite Element Approximation of Lyapunov Equations Related to Parabolic Stochastic PDEs
Artikel i vetenskaplig tidskrift, 2025

A numerical analysis for the fully discrete approximation of an operator Lyapunov equation related to linear stochastic partial differential equations (SPDEs) driven by multiplicative noise is considered. The discretization of the Lyapunov equation in space is given by finite elements and in time by a semiimplicit Euler scheme. The main result is the derivation of the rate of convergence in operator norm. Moreover, it is shown that the solution of the equation provides a representation of a quadratic and path dependent functional of the SPDE solution. This fact yields a deterministic numerical method to compute such functionals. As a secondary result, weak error rates are established for a fully discrete finite element approximation of the SPDE with respect to this functional. This is obtained as a consequence of the approximation analysis of the Lyapunov equation. It is the first weak convergence analysis for fully discrete finite element approximations of SPDEs driven by multiplicative noise that obtains double the strong rate of convergence, especially for path dependent functionals and smooth spatial noise. Numerical experiments illustrate the results empirically, and it is demonstrated that the deterministic method has advantages over Monte Carlo sampling in a stability context.

Stochastic partial differential equations

Weak convergence

Finite element method

Lyapunov equations

Parabolic Anderson model

Numerical approximation

Multiplicative noise

Stochastic heat equation

Författare

Adam Andersson

Göteborgs universitet

Saab

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Andreas Petersson

Linnéuniversitetet

Universitetet i Oslo

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Leander Schroer

Zeppelin Power Systems

Applied Mathematics and Optimization

0095-4616 (ISSN) 1432-0606 (eISSN)

Vol. 91 3 66

Time-Evolving Stochastic Manifolds (StochMan)

Europeiska kommissionen (EU) (EC/HE/101088589), 2023-09-01 -- 2028-08-31.

Efficienta approximeringsmetoder för stokastiska fält på mångfalder

Vetenskapsrådet (VR) (2020-04170), 2021-01-01 -- 2024-12-31.

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

Matematisk analys

DOI

10.1007/s00245-025-10260-8

Mer information

Senast uppdaterat

2025-10-08