Finite Element Approximation of Lyapunov Equations Related to Parabolic Stochastic PDEs
Artikel i vetenskaplig tidskrift, 2025

A numerical analysis for the fully discrete approximation of an operator Lyapunov equation related to linear stochastic partial differential equations (SPDEs) driven by multiplicative noise is considered. The discretization of the Lyapunov equation in space is given by finite elements and in time by a semiimplicit Euler scheme. The main result is the derivation of the rate of convergence in operator norm. Moreover, it is shown that the solution of the equation provides a representation of a quadratic and path dependent functional of the SPDE solution. This fact yields a deterministic numerical method to compute such functionals. As a secondary result, weak error rates are established for a fully discrete finite element approximation of the SPDE with respect to this functional. This is obtained as a consequence of the approximation analysis of the Lyapunov equation. It is the first weak convergence analysis for fully discrete finite element approximations of SPDEs driven by multiplicative noise that obtains double the strong rate of convergence, especially for path dependent functionals and smooth spatial noise. Numerical experiments illustrate the results empirically, and it is demonstrated that the deterministic method has advantages over Monte Carlo sampling in a stability context.

Stochastic partial differential equations

Multiplicative noise

Lyapunov equations

Finite element method

Stochastic heat equation

Parabolic Anderson model

Weak convergence

Numerical approximation

Författare

Adam Andersson

Saab AB

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Annika Lang

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Andreas Petersson

Universitetet i Oslo

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Linnéuniversitetet

Leander Schroer

Zeppelin Power Syst

Applied Mathematics and Optimization

0095-4616 (ISSN) 1432-0606 (eISSN)

Vol. 91 3 66

Time-Evolving Stochastic Manifolds (StochMan)

Europeiska kommissionen (EU) (EC/HE/101088589), 2023-09-01 -- 2028-08-31.

Efficienta approximeringsmetoder för stokastiska fält på mångfalder

Vetenskapsrådet (VR) (2020-04170), 2021-01-01 -- 2024-12-31.

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

Matematisk analys

DOI

10.1007/s00245-025-10260-8

Mer information

Senast uppdaterat

2025-05-14