Optimization and Identification of Lattice Quantizers
Artikel i vetenskaplig tidskrift, 2025

Lattices with minimal normalized second moments are designed using a new numerical optimization algorithm. Starting from a random lower-triangular generator matrix and applying stochastic gradient descent, all elements are updated towards the negative gradient, which makes it the most efficient algorithm proposed so far for this purpose. A graphical illustration of the theta series, called theta image, is introduced and shown to be a powerful tool for converting numerical lattice representations into their underlying exact forms. As a proof of concept, optimized lattices are designed in dimensions up to 16. In all dimensions, the algorithm converges to either the previously best known lattice or a better one. The dual of the 15-dimensional laminated lattice is conjectured to be optimal in its dimension and its exact normalized second moment is computed.

mean square error

lattice design

numerical optimization

moment of inertia

theta series

Algorithm

stochastic gradient descent

theta image

vector quantization

normalized second moment

laminated lattice

quantization constant

lattice quantization

Voronoi region

Författare

Erik Agrell

Max-Planck-Gesellschaft

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Daniel Pook-Kolb

Leibniz Universität Hannover

Bruce Allen

Leibniz Universität Hannover

IEEE Transactions on Information Theory

0018-9448 (ISSN) 1557-9654 (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

Den kondenserade materiens fysik

DOI

10.1109/TIT.2025.3565218

Mer information

Senast uppdaterat

2025-05-09