Boundary-preserving Lamperti-splitting schemes for some stochastic differential equations
Artikel i vetenskaplig tidskrift, 2024

We propose and analyse boundary-preserving schemes for the strong approximations of some scalar SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The schemes consists of a Lamperti transform followed by a Lie–Trotter splitting. We prove Lp(Ω)convergence of order 1, for every p ≥ 1, of the schemes and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting schemes to other numerical schemes for SDEs.

Stochastic differential equations

boundary-preserving numerical scheme

Lie–Trotter splitting scheme

L (Ω)-convergence p

Lamperti transform

Författare

Johan Ulander

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Journal of Computational Dynamics

2158-2505 (eISSN)

Vol. 11 3 289-317

Numerisk analys och simulering av PDE med slumpmässig dispersion

Vetenskapsrådet (VR) (2018-04443), 2019-01-01 -- 2022-12-31.

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

Reglerteknik

DOI

10.3934/jcd.2024015

Mer information

Senast uppdaterat

2025-05-19