Two minimal-variable symplectic integrators for stochastic spin systems
Artikel i vetenskaplig tidskrift, 2025

We present two symplectic integrators for stochastic spin systems, based on the classical implicit midpoint method. The spin systems are identified with Lie-Poisson systems in matrix algebras, after which the numerical methods are derived from structure-preserving Lie-Poisson integrators for isospectral stochastic matrix flows. The integrators are thus geometric methods, require no auxiliary variables, and are suited for general Hamiltonians and a large class of stochastic forcing functions. Conservation properties and convergence rates are shown for several single-spin and multispin systems.

Classical spin chains

Numerical techniques

Spin chains

Numerical approximation & analysis

Författare

Sagy Ephrati

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Erik Jansson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Physical Review E

2470-0045 (ISSN) 2470-0053 (eISSN)

Vol. 111 5 054201

Långtidsbeteende för tvådimensionella inkompressibla flöden via kvantisering

Vetenskapsrådet (VR) (2022-03453), 2023-01-01 -- 2026-12-31.

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

DOI

10.1103/PhysRevE.111.054201

Mer information

Senast uppdaterat

2025-05-21