Generalized classical Yang-Baxter equation and regular decompositions
Artikel i vetenskaplig tidskrift, 2025

The focus of the paper is on constructing new solutions of the generalized classical Yang-Baxter equation (GCYBE) that are not skew-symmetric. Using regular decompositions of finite-dimensional simple Lie algebras, we construct Lie algebra decompositions of g((x))×g[x]/xmg[x]. The latter decompositions are in bijection with the solutions to the GCYBE. Under appropriate regularity conditions, we obtain a partial classification of such solutions. The paper is concluded with the presentations of the Gaudin-type models associated to these solutions.

Lie algebra decompositions

Integrable systems

Yang-Baxter equations

Infinite-dimensional Lie algebras

Författare

Raschid Abedin

Universität Hamburg

Stepan Maximov

Universität Paderborn

Alexander Stolin

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Letters in Mathematical Physics

0377-9017 (ISSN) 1573-0530 (eISSN)

Vol. 115 3 50

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

Algebra och logik

DOI

10.1007/s11005-025-01930-3

Mer information

Senast uppdaterat

2025-05-21