A Jensen inequality for partial traces and applications to partially semiclassical limits
Artikel i vetenskaplig tidskrift, 2025

We prove a matrix inequality for convex functions of a Hermitian matrix on a bipartite space. As an application, we reprove and extend some theorems about eigenvalue asymptotics of Schr & ouml;dinger operators with homogeneous potentials. The case of main interest is where the Weyl expression is infinite and a partially semiclassical limit occurs.

Jensen's inequality

Semiclassical limits

Partial traces

Författare

Eric A. Carlen

Rutgers University

Rupert L. Frank

Ludwig-Maximilians-Universität München (LMU)

MCQST

Simon Larson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Letters in Mathematical Physics

0377-9017 (ISSN) 1573-0530 (eISSN)

Vol. 115 3 52

Ämneskategorier (SSIF 2025)

Matematisk analys

DOI

10.1007/s11005-025-01938-9

Mer information

Senast uppdaterat

2025-05-28