Dynasor 2: From Simulation to Experiment Through Correlation Functions
Preprint, 2025

Correlation functions, such as static and dynamic structure factors, offer a versatile approach to analyzing atomic-scale structure and dynamics.
By having access to the full dynamics from atomistic simulations, they serve as valuable tools for understanding material behavior. Experimentally, material properties are commonly probed through scattering measurements, which also provide access to static and dynamic structure factors. However, it is not trivial to decode these due to complex interactions between atomic motion and the probe. Atomistic simulations can help bridge this gap, allowing for detailed understanding of the underlying dynamics. In this paper, we illustrate how correlation functions provide structural and dynamical insights from simulation and showcase the strong agreement with experiment. To compute the correlation functions, we have updated the Python package DYNASOR with a new interface and, importantly, added support for weighting the computed quantities with form factors or cross sections, facilitating direct comparison with probe-specific structure factors. Additionally, we have incorporated the spectral energy density method, which offers an alternative view of the dispersion for crystalline systems, as well as functionality to project atomic dynamics onto phonon modes, enabling detailed analysis of specific phonon modes from atomistic simulation. We illustrate the capabilities of DYNASOR with diverse examples, ranging from liquid Ni3Al to perovskites, and compare computed results with X-ray, electron and neutron scattering experiments. This highlights how computed correlation functions can not only agree well with experimental observations, but also provide deeper insight into the atomic-scale structure and dynamics of a material.

Molecular dynamics

Atomic-scale dynamics

Correlation functions

Scattering

Phonon mode analysis

Dynamic structure factor

Författare

Esmée Berger

Chalmers, Fysik, Kondenserad materie- och materialteori

Erik Fransson

Chalmers, Fysik, Kondenserad materie- och materialteori

Fredrik Eriksson

Chalmers, Fysik, Kondenserad materie- och materialteori

Eric Lindgren

Chalmers, Fysik, Kondenserad materie- och materialteori

Göran Wahnström

Chalmers, Fysik, Kondenserad materie- och materialteori

Thomas H. Rod

Data Management and Software Center of the European Spallation Source

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala

Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Karbider som vätefällor i stål

Vetenskapsrådet (VR) (2021-05072), 2021-12-01 -- 2025-11-30.

Sveriges Neutronforskarskola - SwedNESS

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2016-07-01 -- 2021-06-30.

Stiftelsen för Strategisk forskning (SSF) (GSn15-0008), 2017-01-01 -- 2020-12-31.

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier (SSIF 2025)

Den kondenserade materiens fysik

Fundament

Grundläggande vetenskaper

Infrastruktur

Chalmers e-Commons (inkl. C3SE, 2020-)

DOI

10.48550/arXiv.2503.21957

Mer information

Senast uppdaterat

2025-05-21