Interface strength and crack propagation mechanisms in sintered copper nanoparticles
Artikel i vetenskaplig tidskrift, 2025

This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor (KQ) of 2.88±0.10 MPa m1/2, compared to 2.12±0.11 MPa m1/2 for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.

Micro-cantilever bending test

Interface strength

Sintering Cu nanoparticles

Cohesive zone model

Transmission Kikuchi diffraction

Författare

Leiming Du

TU Delft

Weiping Jiao

TU Delft

Olof Bäcke

Chalmers, Fysik, Mikrostrukturfysik

Magnus Hörnqvist Colliander

Chalmers, Fysik, Mikrostrukturfysik

René H. Poelma

TU Delft

Jiajie Fan

Fudan University

W. van Driel

TU Delft

Xuejun Fan

Lamar University College of Engineering

Guo Qi Zhang

TU Delft

Acta Materialia

1359-6454 (ISSN)

Vol. 296 121187

Ämneskategorier (SSIF 2025)

Keramiska och pulvermetallurgiska material

Teknisk mekanik

Styrkeområden

Materialvetenskap

DOI

10.1016/j.actamat.2025.121187

Mer information

Senast uppdaterat

2025-06-25