Weighted homomorphisms between C*-algebras
Artikel i vetenskaplig tidskrift, 2025

We show that a bounded, linear map between C*-algebras is a weighted *-homomorphism (the central compression of a *-homomorphism) if and only if it preserves zero-products, range-orthogonality, and domain-orthogonality. It follows that a self-adjoint, bounded, linear map is a weighted *-homomorphism if and only if it preserves zero-products. As an application we show that a linear map between C*-algebras is completely positive, order zero in the sense of Winter– Zacharias if and only if it is positive and preserves zero-products.

domain-orthogonality

C*-algebras

range-orthogonality

zero-products

weighted homomorphisms

Författare

Eusebio Gardella

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Hannes Thiel

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Documenta Mathematica

1431-0635 (ISSN) 1431-0643 (eISSN)

Vol. 30 3 587-610

Mätning av metangasutsläpp från industriella aktiviteter med drönare

VINNOVA (2021-04561), 2021-11-01 -- 2022-11-25.

Ämneskategorier (SSIF 2025)

Matematisk analys

DOI

10.4171/DM/1008

Mer information

Senast uppdaterat

2025-07-01