Neural Approaches for Multi-Objective Routing on Multigraphs
Preprint, 2025

Learning-based methods for routing have gained significant attention in recent years, both in single-objective and multi-objective contexts. Yet, existing methods are unsuitable for routing on multigraphs, which feature multiple edges with distinct attributes between node pairs, despite their strong relevance in real-world scenarios. In this paper, we propose two graph neural network-based methods to address multi-objective routing on multigraphs. Our first approach operates directly on the multigraph by autoregressively selecting edges until a tour is completed. The second model first simplifies the multigraph via a learned pruning strategy and then performs routing on the resulting simple graph. We evaluate both models empirically and demonstrate their strong performance across a range of problems and distributions.

Traveling Salesman Problem

Routing Problems

Multi-Objective Optimization

Graph Learning

Graph Neural Networks

Machine Learning

Multigraphs

Författare

Filip Rydin

Chalmers, Elektroteknik, System- och reglerteknik

Attila Lischka

Chalmers, Elektroteknik, System- och reglerteknik

Jiaming Wu

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

Morteza Haghir Chehreghani

Data Science och AI 2

Balázs Adam Kulcsár

Chalmers, Elektroteknik, System- och reglerteknik

LEAR: Robust LEArning methods for electric vehicle Route selection

Swedish Electromobility Centre, 2023-01-01 -- 2026-12-31.

Styrkeområden

Transport

Ämneskategorier (SSIF 2025)

Transportteknik och logistik

Diskret matematik

Artificiell intelligens

Infrastruktur

Chalmers e-Commons (inkl. C3SE, 2020-)

DOI

10.48550/arXiv.2506.22095

Mer information

Senast uppdaterat

2025-09-03