Decorrelation estimates for translated measures under diagonal flows
Artikel i vetenskaplig tidskrift, 2025

A profound link between homogeneous dynamics and Diophantine approximation is based on an observation that Diophantine properties of a real matrix B are encoded by the corresponding lattice ΛB translated by a multi-parameter semigroup a(t). We establish quantitative decorrelation estimates for measures supported on leaves a(t)ΛB with the error terms depending only on the minimum of the pairwise distances between the parameters. The proof involves a careful analysis of the translated measures in the products of the spaces of unimodular lattices and establishes quantitative equidistributions to measures supported on various intermediate homogeneous subspaces.

higher order equidistribution and mixing

Decorrelation of unipotent orbits

Författare

Michael Björklund

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Reynold Fregoli

University of Michigan

Alexander Gorodnik

Universität Zürich

Journal of Modern Dynamics

1930-5311 (ISSN) 1930-532X (eISSN)

Vol. 21 401-441

Ämneskategorier (SSIF 2025)

Matematisk analys

DOI

10.3934/jmd.2025007

Mer information

Senast uppdaterat

2025-07-10