Classical Simulation of Circuits with Realistic Odd-Dimensional Gottesman-Kitaev-Preskill States
Artikel i vetenskaplig tidskrift, 2025

Classically simulating circuits with bosonic codes is challenging due to the prohibitive cost of simulating quantum systems with many, possibly infinite, energy levels. We propose an algorithm to simulate circuits with encoded Gottesman-Kitaev-Preskill (GKP) states, specifically for odd-dimensional encoded qudits. Our approach is tailored to be especially effective in the most challenging but practically relevant regime, where the codeword states exhibit high (but finite) squeezing. Our algorithm leverages the Zak-Gross Wigner function introduced by Davis, Fabre, and Chabaud, which represents infinitely squeezed encoded stabilizer states positively. The run-time of the algorithm scales with the negativity of the Wigner function, allowing for efficient simulation of certain large-scale circuits-namely, input stabilizer GKP states undergoing generalized GKP-encoded Clifford operations followed by modular measurement-with a high degree of squeezing. For stabilizer GKP states exhibiting 12 dB of squeezing, our algorithm can simulate circuits with up to 1000 modes with less than double the number of samples required for a single input mode, which is in stark contrast to existing simulators. Therefore, this approach holds significant potential for benchmarking early implementations of quantum computing architectures utilizing bosonic codes.

Författare

Cameron Calcluth

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Oliver Hahn

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

University of Tokyo

Juani Bermejo-Vega

Universita' degli Studi di Milano

Alessandro Ferraro

Politecnico di Milano

Queen's University Belfast

Giulia Ferrini

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 135 1 010601

Efficient Verification of Quantum computing architectures with Bosons (VeriQuB)

Europeiska kommissionen (EU) (EC/HE/101114899), 2023-09-01 -- 2027-08-31.

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

DOI

10.1103/xmtw-g54f

PubMed

40743057

Mer information

Senast uppdaterat

2025-07-25