Robust and Efficient Bayesian Approach for Snapshot Radio Slam
Artikel i vetenskaplig tidskrift, 2025

Radio-based simultaneous localization and mapping (SLAM) has the potential to provide precise localization and environmental sensing capabilities using millimeter wave (mmWave) signals. In this paper, we propose methods that address the robustness and computational complexity issues of existing bistatic snapshot radio SLAM algorithms. We introduce multi-hypothesis Bayesian approaches to enhance the robustness and accuracy of solving the SLAM problem. In addition, we introduce effective methods to reduce computational complexity using prior information. The developed methods are evaluated using experimental mmWave data using 5G waveforms and benchmarked with respect to state-of-the-art methods. The results imply that the proposed methods improve the accuracy, robustness, and efficiency of radio SLAM.

mmWave

Bayesian estimation

Simultaneous localization and mapping

5G

Författare

Xi Zhang

Tampereen Yliopisto

Ossi Kaltiokallio

Tampereen Yliopisto

Yu Ge

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

M. Valkama

Tampereen Yliopisto

International Conference on Localization and Gnss Icl Gnss

23250747 (ISSN) 23250771 (eISSN)

2025

Ämneskategorier (SSIF 2025)

Robotik och automation

Signalbehandling

Reglerteknik

DOI

10.1109/ICL-GNSS65520.2025.11046111

Mer information

Senast uppdaterat

2025-08-01