Towards Prescriptive Maintenance Using Digital Twins and Artificial Intelligence
Licentiatavhandling, 2025
Employing a design research methodology based on five studies, this research systematically addresses three key research questions. It first identifies critical barriers to industrial implementation, including data scarcity, system integration complexity, and organizational skill gaps. To overcome these challenges, a stakeholder-weighted decision model is applied to test what-if scenarios, and the thesis proposes an AI-enhanced digital twins framework complemented by a five-layer conceptual framework that guides scalable adoption. The effectiveness of these solutions is demonstrated through two empirical studies encompassing automated maintenance prioritization using deep reinforcement learning, and unsupervised anomaly detection and localization. This work bridges the academic-industry gap by delivering both theoretical insights and validated frameworks that transform maintenance from a reactive cost center into a strategic driver of operational resilience, accelerating the adoption of intelligent, autonomous systems and supporting the evolution toward sustainable, self-optimizing manufacturing.
Prescriptive Maintenance
Industry 4.0
Predictive Maintenance
Digital Twins
Artificial Intelligence
Smart Maintenance
Författare
Siyuan Chen
Chalmers, Industri- och materialvetenskap, Produktionssystem
Understanding Stakeholder Requirements for Digital Twins In Manufacturing Maintenance
Proceedings - Winter Simulation Conference,;(2023)p. 2008-2019
Paper i proceeding
Data-Driven Smart Maintenance Decision Analysis: A Drone Factory Demonstrator Combining Digital Twins and Adapted AHP
Proceedings - Winter Simulation Conference,;Vol. 2023(2023)p. 1996-2007
Paper i proceeding
Enhancing Digital Twins with Deep Reinforcement Learning: A Use Case in Maintenance Prioritization
Proceedings - Winter Simulation Conference,;Vol. WSC2024(2024)p. 1611-1622
Paper i proceeding
Comparison of Unsupervised Image Anomaly Detection Models for Sheet Metal Glue Lines
Engineering Applications of Artificial Intelligence,;Vol. 153(2025)
Artikel i vetenskaplig tidskrift
AI-enhanced digital twins in maintenance: Systematic review, industrial challenges, and bridging research–practice gaps
Journal of Manufacturing Systems,;Vol. 82(2025)p. 678-699
Reviewartikel
Integrated Manufacturing Analytics Platform för Prediktivt Underhåll med IoT
VINNOVA (2021-02537), 2021-11-15 -- 2024-11-30.
Ämneskategorier (SSIF 2025)
Produktionsteknik, arbetsvetenskap och ergonomi
Industriell ekonomi
Drivkrafter
Hållbar utveckling
Styrkeområden
Produktion
Utgivare
Chalmers
Virtual Development Laboratory VDL
Opponent: Assistant Prof. Giovanni Lugaresi, Industrial & Systems Engineering, KU Leuven, Belgium