Riesz means asymptotics for Dirichlet and Neumann Laplacians on Lipschitz domains
Artikel i vetenskaplig tidskrift, 2025

We consider the eigenvalues of the Dirichlet and Neumann Laplacians on a bounded domain with Lipschitz boundary and prove two-term asymptotics for their Riesz means of arbitrary positive order. Moreover, when the underlying domain is convex, we obtain universal, non-asymptotic bounds that correctly reproduce the two leading terms in the asymptotics and depend on the domain only through simple geometric characteristics. Important ingredients in our proof are non-asymptotic versions of various Tauberian theorems.

Författare

Rupert L. Frank

California Institute of Technology (Caltech)

MCQST

Ludwig-Maximilians-Universität München (LMU)

Simon Larson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Inventiones Mathematicae

0020-9910 (ISSN) 1432-1297 (eISSN)

Vol. 241 999-1079

Ämneskategorier (SSIF 2025)

Beräkningsmatematik

Matematisk analys

DOI

10.1007/s00222-025-01352-x

Mer information

Senast uppdaterat

2025-08-18