Kähler-Einstein metrics with positive curvature near an isolated log terminal singularity
Artikel i vetenskaplig tidskrift, 2025

We analyze the existence of Kähler-Einstein metrics of positive curvature in the neighborhood of a germ of a log terminal singularity (X,p). This boils down to solving a Dirichlet problem for certain complex Monge-Ampère equations. We establish a Moser-Trudinger inequality (Formula presented) in subcritical regimes (Formula presented) and show the existence of smooth solutions in those cases. We show that the expected critical exponent (Formula presented) can be expressed in terms of the normalized volume, an important algebraic invariant of the singularity.

complex Monge-Ampére equation

log-terminal singularity

normalized volume

Dirichlet problem

Kähler-Einstein metrics

Författare

Viincent Guedj

Institut Universitaire de France

Antonio Trusiani

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

Compositio Mathematica

0010-437X (ISSN) 1570-5846 (eISSN)

Vol. 161 4 714-755

Ämneskategorier (SSIF 2025)

Geometri

Matematisk analys

DOI

10.1112/S0010437X24007619

Mer information

Senast uppdaterat

2025-08-27