Score matching for bridges without learning time-reversals
Paper i proceeding, 2025

We propose a new algorithm for learning bridged diffusion processes using score-matching methods. Our method relies on reversing the dynamics of the forward process and using this to learn a score function, which, via Doob's h-transform, yields a bridged diffusion process; that is, a process conditioned on an endpoint. In contrast to prior methods, we learn the score term ∇x log p(t, x; T, y) directly, for given t, y, completely avoiding first learning a time-reversal. We compare the performance of our algorithm with existing methods and see that it outperforms using the (learned) time-reversals to learn the score term. The code can be found at https://github.com/libbylbaker/forward_bridge.

Författare

Elizabeth L. Baker

Köpenhamns universitet

Moritz Schauer

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Stefan Sommer

Köpenhamns universitet

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022

26403498 (eISSN)

Vol. 258 775-783

28th International Conference on Artificial Intelligence and Statistics, AISTATS 2025
Mai Khao, Thailand,

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

Datavetenskap (datalogi)

Mer information

Senast uppdaterat

2025-09-04