Localized statistics decoding for quantum low-density parity-check codes
Artikel i vetenskaplig tidskrift, 2025

Quantum low-density parity-check codes are a promising candidate for fault-tolerant quantum computing with considerably reduced overhead compared to the surface code. However, the lack of a practical decoding algorithm remains a barrier to their implementation. In this work, we introduce localized statistics decoding, a reliability-guided inversion decoder that is highly parallelizable and applicable to arbitrary quantum low-density parity-check codes. Our approach employs a parallel matrix factorization strategy, which we call on-the-fly elimination, to identify, validate, and solve local decoding regions on the decoding graph. Through numerical simulations, we show that localized statistics decoding matches the performance of state-of-the-art decoders while reducing the runtime complexity for operation in the sub-threshold regime. Importantly, our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.

Författare

Timo Hillmann

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Lucas Berent

Technische Universität München

Armanda O. Quintavalle

Freie Universität Berlin

Jens Eisert

Helmholtz-Gemeinschaft Deutscher Forschungszentren

Freie Universität Berlin

Robert Wille

Technische Universität München

Software Competence Center Hagenberg

Joschka Roffe

University of Edinburgh

Freie Universität Berlin

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 16 1 8214

Ämneskategorier (SSIF 2025)

Datorteknik

Den kondenserade materiens fysik

Telekommunikation

DOI

10.1038/s41467-025-63214-7

PubMed

40897712

Relaterade dataset

Simulation results for "Localized statistics decoding: A parallel decoding algorithm for quantum low-density parity-check codes" [dataset]

DOI: https://zenodo.org/records/12548001

Mer information

Senast uppdaterat

2025-09-16