Agentic AI Integrated with Scientific Knowledge: Laboratory Validation in Systems Biology
Preprint, 2025
We couple this AI-driven approach to automated cell-culture and metabolomics platforms, enabling hypothesis validation and refinement, yielding a flexible system for scientific discovery.
We validate the system in Saccharomyces cerevisiae, identifying novel interactions, including glutamate-induced synergistic growth inhibition in spermine-treated cells and aminoadipate’s partial rescue of formic-acid stress. All hypotheses, experiments, and data are captured in a graph database employing controlled vocabularies. Existing ontologies are extended, and a novel representation of scientific hypotheses is presented using description logics. This work enables a more reliable, machine-driven discovery process in systems biology.
machine learning
Laboratory automation
inductive logic programming
systems biology
automation of science
large language models
Författare
Daniel Brunnsåker
Chalmers, Data- och informationsteknik, Data Science och AI
Alexander Gower
Chalmers, Data- och informationsteknik, Data Science och AI
Prajakta Naval
Chalmers, Life sciences, Infrastrukturer
Erik Bjurström
Chalmers, Life sciences, Infrastrukturer
Filip Kronström
Chalmers, Data- och informationsteknik, Data Science och AI
Ievgeniia Tiukova
Chalmers, Life sciences, Infrastrukturer
Ross King
Chalmers, Data- och informationsteknik, Data Science och AI
Ämneskategorier (SSIF 2025)
Bioinformatik (beräkningsbiologi)
Bioinformatik och beräkningsbiologi
Cellbiologi
Artificiell intelligens
DOI
10.1101/2025.06.24.661378