Beyond Performance: Explaining Non-Intuitive Deep Reinforcement Learning Actions in Elastic Optical Networks
Övrigt konferensbidrag, 2025

We develop a Deep Reinforcement Learning (DRL) agent for the RMSA problem and improve the Shapley Value for Explaining Reinforcement Learning (SVERL) explainability framework by integrating policy sensitivity and feature interdependence for the RMSA problem. We then explain the proactive rejection of lightpath requests.

Optical networks

Explainable AI

Shapley Value for Explaining Reinforcement Learning (SVERL)

Författare

Louma Mehyeddine

Universite Libanaise

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Alaa Amro

Universite Libanaise

Jean Pierre Asdikian

Politecnico di Milano

Ihab Sbeity

Universite Libanaise

Guido Maier

Politecnico di Milano

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Sebastian Troia

Politecnico di Milano

Omran Ayoub

Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)

51st European Conference on Optical Communication
Copenhagen, Denmark,

Efficient Confluent Edge Networks (ECO-eNET)

Europeiska kommissionen (EU) (EC/HE/101139133), 2024-01-01 -- 2028-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datavetenskap (datalogi)

Mer information

Senast uppdaterat

2025-10-29