Beyond Performance: Explaining Non-Intuitive Deep Reinforcement Learning Actions in Elastic Optical Networks
Paper i proceeding, 2025

We develop a Deep Reinforcement Learning (DRL) agent for the RMSA problem and improve the Shapley Value for Explaining Reinforcement Learning (SVERL) explainability framework by integrating policy sensitivity and feature interdependence for the RMSA problem. We then explain the proactive rejection of lightpath requests.

Optical networks

Shapley Value for Explaining Reinforcement Learning (SVERL)

Explainable AI

Författare

Louma Mehyeddine

Universite Libanaise

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Alaa Amro

Universite Libanaise

Jean Pierre Asdikian

Politecnico di Milano

Ihab Sbeity

Universite Libanaise

Guido Maier

Politecnico di Milano

Paolo Monti

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Sebastian Troia

Politecnico di Milano

Omran Ayoub

Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)

Proceedings of the 51st European Conference on Optical Communication, ECOC 2025

51st European Conference on Optical Communication
Copenhagen, Denmark,

Efficient Confluent Edge Networks (ECO-eNET)

Europeiska kommissionen (EU) (EC/HE/101139133), 2024-01-01 -- 2028-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datavetenskap (datalogi)

Mer information

Skapat

2025-09-22