Shared-optical-path VLBI frequency phase transfer from 86 to 258 GHz on an 8600km baseline: Demonstrated with the APEX and IRAM 30m telescopes
Artikel i vetenskaplig tidskrift, 2025

Context. The receiver N3AR operating at a frequency range between 67 and 116 GHz was commissioned at the APEX telescope in October 2024. It adds a new low-frequency band for APEX, with the capability of simultaneous dual-frequency observations using a dichroic beamsplitter. The 3 mm receiver also allows APEX to join the existing 3 mm global very long baseline interferometry (VLBI) network. Aims. One of our commissioning goals was to perform simultaneous dual-band VLBI observations at 86 and 258 GHz using receivers with shared optical paths (SOPs) to correct the atmospheric phase fluctuations using the frequency phase transfer (FPT) technique. This was possible together with the IRAM 30 m telescope, which has already developed such a capability. We aimed to verify the expected phase coherence and sensitivity improvement at the higher frequency achievable by applying FPT. Methods. With the dual-band, single baseline data, we applied the FPT method, which uses the lower-frequency data to correct the simultaneously observed higher-frequency data. We evaluated the improvement compared to the conventional single-band observing mode by analyzing the coherence factor in the higher-frequency data. Results. Our results show that the phase fluctuations at the two bands correlate well. After applying FPT, the interferometric phases at the higher frequency vary much less, and the coherence factor is significantly improved. Conclusions. Our analysis confirms the feasibility of applying FPT to frequencies above 250 GHz with SOP receivers. Future observations in this mode could dramatically improve the sensitivity and imaging fidelity of high-frequency VLBI.

Galaxies: active

Techniques: interferometric

Techniques: high angular resolution

Methods: data analysis

Instrumentation: high angular resolution

Författare

G. Y. Zhao

Max-Planck-Gesellschaft

A. Roy

Max-Planck-Gesellschaft

Jan Wagner

Max-Planck-Gesellschaft

E. Donoso

Universidad de Concepción

Pablo Torne

Institut de Radioastronomie Millimétrique (IRAM)

Eduardo Ros

Max-Planck-Gesellschaft

Michael Lindqvist

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

A. P. Lobanov

Max-Planck-Gesellschaft

Venkatessh Ramakrishnan

Aalto-Yliopisto

Turun Yliopisto

T.P. Krichbaum

Max-Planck-Gesellschaft

H. Rottmann

Max-Planck-Gesellschaft

A.J. Zensus

Max-Planck-Gesellschaft

J. P. Perez-Beaupuits

Pontificia Universidad Catolica de Chile

Max-Planck-Gesellschaft

European Southern Observatory Santiago

Benjamin Klein

Max-Planck-Gesellschaft

K. Menten

Max-Planck-Gesellschaft

Oliver Ricken

Max-Planck-Gesellschaft

N. Reyes

Max-Planck-Gesellschaft

S. Sanchez

Institut de Radioastronomie Millimétrique (IRAM)

Ignacio Ruiz

Institut de Radioastronomie Millimétrique (IRAM)

C. Duran

Institut de Radioastronomie Millimétrique (IRAM)

D. John

Institut de Radioastronomie Millimétrique (IRAM)

J. L. Santaren

Institut de Radioastronomie Millimétrique (IRAM)

M. Sánchez Portal

Institut de Radioastronomie Millimétrique (IRAM)

M. Bremer

Institut de Radioastronomie Millimétrique (IRAM)

C. Kramer

Institut de Radioastronomie Millimétrique (IRAM)

K. Schuster

Institut de Radioastronomie Millimétrique (IRAM)

M. J. Rioja

Observatorio Astronómico Nacional (OAN)

University of Western Australia

Richard Dodson

University of Western Australia

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 701 A132

RadioNet 4

Europeiska kommissionen (EU) (EC/H2020/730562), 2017-01-01 -- 2020-12-31.

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

Astronomi, astrofysik och kosmologi

DOI

10.1051/0004-6361/202555346

Mer information

Senast uppdaterat

2025-09-25