Dynamically Fine-Tuned Neural Compressor for FDD Massive MIMO CSI Feedback
Paper i proceeding, 2025

Efficient channel state information (CSI) compression is essential in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems to mitigate excessive feedback overhead. While deep learning-based methods achieve superior performance, they struggle with distribution shifts, leading to degradation in their performance. To address this, we propose a model fine-tuning approach for CSI feedback, dynamically updating encoder/decoder networks using recent CSI samples. We adopt a full-model fine-tuning scheme, jointly updating the encoder and decoder model while accounting for the additional feedback overhead imposed by conveying the updated decoder parameters. Our results demonstrate that full-model fine-tuning significantly enhances the rate-distortion (RD) performance of neural CSI compression. Furthermore, we analyze how often the full-model fine-tuning should be applied in a new wireless environment and identify an optimal period interval for achieving the best RD trade-off.

fine-tuning

deep learning

massive MIMO

CSI compression

Författare

Mehdi Sattari

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Deniz Gündüz

Imperial College London

Tommy Svensson

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC

23253789 (ISSN)


9781665477765 (ISBN)

26th IEEE International Workshop on Signal Processing and Artificial Intelligence for Wireless Communications, SPAWC 2025
Surrey, United Kingdom,

End-to-end slicing and data-driven automation of next generation cellular networks with mobile edge clouds (SEMANTIC)

Europeiska kommissionen (EU) (EC/H2020/861165), 2020-01-01 -- 2023-12-31.

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Telekommunikation

DOI

10.1109/SPAWC66079.2025.11143260

Mer information

Senast uppdaterat

2025-10-01