The metric for matrix degenerate Kato square root operators
Artikel i vetenskaplig tidskrift, 2025

We prove a Kato square root estimate with anisotropically degenerate matrix coefficients. We do so by doing the harmonic analysis, using an auxiliary Riemannian metric adapted to the operator. We also derive L-2-solvability estimates for boundary value problems, for divergence form elliptic equations with matrix degenerate coefficients. Main tools are chain rules and Piola transformations, for fields in matrix weighted L-2 spaces, under W-1;1 homeomorphism.

Riemannian metric

holomorphic functional calculus

weighted norm inequalities

matrix weight

anisotropically degenerate coefficients

Författare

Gianmarco Brocchi

Háskóli Íslands

Andreas Rosén

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Revista Matematica Iberoamericana

0213-2230 (ISSN) 22350616 (eISSN)

Vol. 41 6

Ämneskategorier (SSIF 2025)

Matematisk analys

DOI

10.4171/RMI/1572

Mer information

Senast uppdaterat

2025-10-20