Gradient-descent methods for fast quantum state tomography
Artikel i vetenskaplig tidskrift, 2025

Quantum state tomography (QST) is a widely employed technique for characterizing the state of a quantum system. However, it is plagued by two fundamental challenges: computational and experimental complexity grows exponentially with the number of qubits, rendering experimental implementation and data post-processing arduous even for moderately sized systems. Here, we introduce gradient-descent (GD) algorithms for the post-processing step of QST in discrete- and continuous-variable systems. To ensure physically valid state reconstruction at each iteration step of the algorithm, we use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization. These parameterizations have the added benefit of enabling a rank-controlled ansatz, which simplifies reconstruction when there is prior information about the system. We benchmark the performance of our GD-QST techniques against state-of-the-art methods, including constrained convex optimization, conditional generative adversarial networks, and iterative maximum likelihood estimation. Our comparison focuses on time complexity, iteration counts, data requirements, state rank, and robustness against noise. We find that rank-controlled ansatzes in our stochastic mini-batch GD-QST algorithms effectively handle noisy and incomplete data sets, yielding significantly higher reconstruction fidelity than other methods. Simulations achieving full-rank seven-qubit QST in under three minutes on a standard laptop, with 18 GB of RAM and no dedicated GPU, highlight that GD-QST is computationally more efficient and outperforms other techniques in most scenarios, offering a promising avenue for characterizing noisy intermediate-scale quantum devices. Our Python code for GD-QST algorithms is publicly available at github.com/mstorresh/GD-QST.

gradient descent optimization

density matrix parameterization

quantum state tomography

Författare

Akshay Gaikwad

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Manuel Sebastian Torres

Katholieke Universiteit Leuven

Student vid Chalmers

Shahnawaz Ahmed

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Anton Frisk Kockum

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

QUANTUM SCIENCE AND TECHNOLOGY

2058-9565 (ISSN)

Vol. 10 4 045055

Kvantsimulering och kvantkommunikation med stora atomer

Stiftelsen för Strategisk forskning (SSF) (FFL21-0279), 2022-08-01 -- 2027-12-31.

Open Superconducting Quantum Computers (OpenSuperQPlus)

Europeiska kommissionen (EU) (EC/HE/101113946), 2023-03-01 -- 2026-08-31.

Ämneskategorier (SSIF 2025)

Datavetenskap (datalogi)

Reglerteknik

DOI

10.1088/2058-9565/ae0baa

Mer information

Senast uppdaterat

2025-10-17