Classical simulation and quantum resource theory of non-Gaussian optics
Artikel i vetenskaplig tidskrift, 2025

We propose efficient algorithms for classically simulating Gaussian unitaries and measurements applied to non-Gaussian initial states. The constructions are based on decomposing the non-Gaussian states into linear combinations of Gaussian states. We use an extension of the covariance matrix formalism to efficiently track relative phases in the superpositions of Gaussian states. We get an exact simulation algorithm, which costs quadratically with the number of Gaussian states required to represent the initial state, and an approximate simulation algorithm, which costs linearly with the l1 norm of the coefficients associated with the superposition. We define measures of non-Gaussianity quantifying this simulation cost, which we call the Gaussian rank and the Gaussian extent. From the perspective of quantum resource theories, we investigate the properties of this type of non-Gaussianity measure and compute optimal decompositions for states relevant to continuous-variable quantum computing.

Författare

Oliver Hahn

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

University of Tokyo

Ryuji Takagi

University of Tokyo

Giulia Ferrini

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Hayata Yamasaki

University of Tokyo

Quantum

2521327X (eISSN)

Vol. 9 1881

Efficient Verification of Quantum computing architectures with Bosons (VeriQuB)

Europeiska kommissionen (EU) (EC/HE/101114899), 2023-09-01 -- 2027-08-31.

WACQT kvantteknologitestbädd

Knut och Alice Wallenbergs Stiftelse (KAW2022.0332,KAW2023.0393), 2023-05-01 -- 2028-04-01.

Destillation av kvantinformation i bosoniska kvantdatorer

Vetenskapsrådet (VR) (2023-04127), 2024-01-01 -- 2027-12-31.

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

DOI

10.22331/q-2025-10-13-1881

Mer information

Senast uppdaterat

2025-10-21