Informed Deep Learning for Electromagnetic Scattering Using Quasinormal Modes
Paper i proceeding, 2025

Neural networks have proven to be a powerful tool in the inverse design of meta-materials, metasurfaces and photonic crystals. However, a major limitation of neural networks is that they require very large amounts of data to train. We propose a network architecture for electromagnetic scattering that learns to represent scattering spectra in terms of resonances. We show that this approach significantly reduces the required amount of training data compared to standard neural networks. Our model is based on the highly general quasinormal-mode formalism, making it applicable to a wide range of devices.

Författare

Viktor Aadland Lilja

Chalmers, Fysik, Kondenserad materie- och materialteori

Albin Jonasson Svärdsby

Chalmers, Fysik, Kondenserad materie- och materialteori

Timo Gahlmann

Chalmers, Fysik, Kondenserad materie- och materialteori

Philippe Tassin

Chalmers, Fysik, Kondenserad materie- och materialteori

19th International Congress on Artificial Materials for Novel Wave Phenomena Metamaterials 2025

X1-X2
9798331536565 (ISBN)

19th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2025
Amsterdam, Netherlands,

Utveckling av nya fotoniska metaytor med hjälp av artificiell intelligens

Vetenskapsrådet (VR) (2020-05284), 2020-12-01 -- 2024-11-30.

Ämneskategorier (SSIF 2025)

Telekommunikation

Annan fysik

DOI

10.1109/Metamaterials65622.2025.11174147

Mer information

Senast uppdaterat

2025-10-27